Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.061
1.
J Drugs Dermatol ; 23(5): 366-375, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709706

OBJECTIVE:   This study aimed to investigate the ultraviolet (UV) protection/repair benefits of a patented Amino Acid Complex (AAComplex). METHODS: I) AAComplex was incubated with dermal fibroblasts, with/without UVA, and collagen I was measured with a GlasBoxPlus device. II) A lotion, with/without AAComplex (1%) was applied topically to skin explants, following UVA irradiation, and quantified for health-related biomarkers (TNFalpha, histamine, and MMP-1). III) A broad spectrum sunscreen with SPF 46 and a skincare serum containing AAComplex (2%) were assessed using epidermal equivalents, in the presence of UV irradiation, for effects on IL-1alpha, thymine dimers, Ki-67, filaggrin and Nrf2. RESULTS: I) Collagen I synthesis in dermal fibroblasts was significantly decreased after UVA compared to without UV. The presence of AAComplex prevented this decrease. II) UVA irradiation of skin explants increased histamine, TNFα, and MMP-1. Hydrocortisone aceponate cream significantly decreases all 3 biomarkers. AAComplex contained lotion also significantly decreased all 3 biomarkers, the no AAComplex control lotion only reduced histamine. III) With the regimen of sunscreen + AAComplex contained skincare serum, the significant reduction in IL-1alpha was observed along with a complete recovery of Ki-67 and stimulation of filaggrin and Nrf2T. No thymine dimer positive cell was observed indicating the most positive skin impact from the regiment.  Conclusion: This research using different human skin models demonstrated that AAComplex can provide protection and damage repair caused by UV, at the ingredient level also when formulated in a serum or lotion formula. Skin may be best protected from UV damage when the regimen is used.   J Drugs Dermatol. 2024;23(5):366-375. doi:10.36849/JDD.7916.


Fibroblasts , Filaggrin Proteins , Matrix Metalloproteinase 1 , NF-E2-Related Factor 2 , Tumor Necrosis Factor-alpha , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , Fibroblasts/drug effects , Fibroblasts/radiation effects , Fibroblasts/metabolism , Matrix Metalloproteinase 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Skin/radiation effects , Skin/drug effects , Skin/metabolism , Sunscreening Agents/administration & dosage , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Amino Acids/administration & dosage , Amino Acids/pharmacology , Amino Acids/chemistry , Interleukin-1alpha/metabolism , Histamine/blood , Skin Cream/administration & dosage , Biomarkers/metabolism , Collagen Type I , Intermediate Filament Proteins/metabolism , Ki-67 Antigen/metabolism , Pyrimidine Dimers , Cells, Cultured
2.
Int J Biol Macromol ; 267(Pt 2): 131462, 2024 May.
Article En | MEDLINE | ID: mdl-38614163

The rapid development of the industry has led to the destruction of the earth's ozone layer, resulting in an increasingly serious problem of excessive ultraviolet radiation. Exploring effective measures to address these problems has become a hot topic. Lignin shows promise in the design and preparation of anti-ultraviolet products due to its inherent properties. However, it is important to investigate way to enhance the reactivity of lignin and determine its application form in related products. In this study, phenolic reactions with tea polyphenols were conducted through acid-catalyzed conversion, utilizing organic solvent lignin as the primary material. The phenolic hydroxyl content of the original lignin increased significantly by 218.8 %, resulting in notable improvements in UV resistance and oxidation resistance for phenolic lignin. Additionally, micro-nanocapsule emulsions were formed using phenolic lignin particles as surfactants through ultrasonic cavitation with small-molecule sunscreens. A bio-based sunscreen was prepared with phenolated lignin micro-nanocapsules as the active ingredient, achieving an SPF 100.2 and demonstrating excellent stability. The sunscreen also exhibited strong antioxidant properties and impermeability, ensuring user safety. This research offers a current solution for improving the application of lignin in sunscreens while also broadening the potential uses of plant-based materials in advanced functional products.


Lignin , Oxidation-Reduction , Polyphenols , Sunscreening Agents , Tea , Ultraviolet Rays , Lignin/chemistry , Polyphenols/chemistry , Catalysis , Tea/chemistry , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Acids/chemistry
3.
Article En | MEDLINE | ID: mdl-38518984

Benzophenone chemicals (BPs) have been developed to prevent the adverse effects of UV radiation and they are widely contaminated. 11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1) catalyze the conversion of inactive glucocorticoid to active glucocorticoid, playing critical role in many physiological function. However, the direct effect of BPs on human, pig, rat, and mouse 11ß-HSD1 remains unclear. In this study, we screened the inhibitory strength of 12 BPs on 4 species, and performed the structure-activity relationship (SAR) and in silico docking analysis. The inhibitory potency of BPs was: for human 11ß-HSD1, BP6 (IC50 = 18.76 µM) > BP8 (40.84 µM) > BP (88.89 µM) > other BPs; for pig 11ß-HSD1, BP8 (45.57 µM) > BP6 (59.44 µM) > BP2 (65.12 µM) > BP (135.56 µM) > other BPs; for rat 11ß-HSD1, BP7 (67.17 µM) > BP (68.83 µM) > BP8 (133.04 µM) > other BPs; and for mouse 11ß-HSD1, BP8 (41.41 µM) > BP (50.61 µM) > other BPs. These BP chemicals were mixed/competitive inhibitors of these 11ß-HSD1 enzymes. The 2,2'-dihydroxy substitutions in two benzene rings play a key role in enhancing the effectiveness of inhibiting 11ß-HSD1, possibly via increasing hydrogen bond interactions. Docking analysis shows that these BPs bind to NADPH/glucocorticoid binding sites and forms hydrogen bonds with catalytic residues Ser and/or Tyr. In conclusion, this study demonstrates that BP chemicals can inhibit 11ß-HSD1 from 4 species, and there are subtle species-dependent difference in the inhibitory strength and structural variations of BPs.


11-beta-Hydroxysteroid Dehydrogenase Type 1 , Benzophenones , Molecular Docking Simulation , Animals , Benzophenones/chemistry , Benzophenones/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , Humans , Structure-Activity Relationship , Rats , Mice , Swine , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Sunscreening Agents/toxicity , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Species Specificity , Ultraviolet Rays
4.
ACS Appl Mater Interfaces ; 16(13): 15798-15808, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38507684

Sunscreens play a crucial role in protecting the skin from ultraviolet (UV) damage. However, present commercial sunscreens have a tendency to generate free radicals in the UV window, resulting in serious inflammatory responses and health problems. In this study, we demonstrate that silk fibroin microspheres (SFMPs) assembled from regenerated silk fibroin (SF) could scavenge free radicals while preventing UV irradiation and thus present a promising sunscreen. The SFMP reflected more UV light than SF and presented a higher stability than that of organic commercial sunscreens. In vitro analysis proved that SFMP could more efficiently scavenge the hydroxy radical and reduce the intracellular reactive oxygen than titanium dioxide (TiO2). In vivo experiments exhibited that SFMP provided stronger skin protection against UV irradiation than commercial sunscreens and TiO2. Furthermore, SFMP treatment significantly inhibited the skin inflammatory response. This work suggests that the SFMP has great potential to be developed into a biosafe sunscreen.


Bombyx , Fibroins , Animals , Fibroins/pharmacology , Sunscreening Agents/pharmacology , Microspheres , Free Radicals , Silk
5.
Environ Pollut ; 349: 123840, 2024 May 15.
Article En | MEDLINE | ID: mdl-38537797

Benzophenone-3 (BP3) is a common ingredient in personal care products (PCPs) due to its well-established effectiveness in absorbing UV radiation. Sunscreen products are among the most widely used PCPs-containing BP3 applied to the skin, resulting in significant human exposure to BP3 primarily through a dermal application. In the present work, we have tested the action of three environmentally relevant concentrations of BP3 (2, 20 and 200 µg/L) on an in vitro model of implantation of murine blastocysts and on migration ability of the human trophoblast cell line Swan 71. We showed that BP3 caused a significant reduction of blastocyst expansion and a delayed hatching in a non-monotonic way. Besides, embryos displayed a delayed attachment in the three BP3 groups, resulting in a smaller implantation area on the 6th day of culture: BP3(2) (0.32 ± 0.07 mm2); BP3(20) (0.30 ± 0.08 mm2) and BP3(200) (0.25 ± 0.06 mm2) in comparison to the control (0.42 ± 0.07 mm2). We also found a reduced migration capacity of the human first-trimester trophoblast cell line Swan 71 in a scratch assay when exposed to BP3: the lowest dose displayed a higher uncovered area (UA) at 6h when compared to the control, whereas a higher UA of the wound was observed for the three BP3 concentrations at 18 and 24 h of exposure. The changes in UA provoked by BP3 restored to normal values in the presence of flutamide, an androgen receptor (AR) inhibitor. These results indicate that a direct impairment on early embryo implantation and a defective migration of extravillous trophoblast cells through the androgen receptor pathway can be postulated as mechanisms of BP3-action on early gestation with potential impact on fetal growth.


Benzophenones , Cell Movement , Embryo Implantation , Sunscreening Agents , Trophoblasts , Ultraviolet Rays , Benzophenones/toxicity , Sunscreening Agents/toxicity , Sunscreening Agents/pharmacology , Trophoblasts/drug effects , Cell Movement/drug effects , Mice , Animals , Humans , Embryo Implantation/drug effects , Blastocyst/drug effects , Female , Cell Line
6.
Chem Pharm Bull (Tokyo) ; 72(2): 220-225, 2024.
Article En | MEDLINE | ID: mdl-38382975

CeO2 nanoparticles (nanoceria) were proposed as an alternative physical sunscreen agent with antioxidant properties and comparable UV absorption performance. Green synthesis of nanoceria with Ag and Ni dopants resulted in doped nanoceria with lower catalytic activity and biologically-safe characteristics. The doped nanoceria was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Rancimat Instrument, and UV-Vis Spectrophotometer for SPF (Sun Protection Factor) determination. XRD and TEM analysis showed that nanoceria had been successfully formed in nanoscale-sized with a change in crystallite size due to the crystal defect phenomenon caused by dopant addition. While the Rancimat test and band gap energy analysis were conducted to evaluate the oxidative stability and reactive oxygen species formation, it was confirmed that dopant addition could decrease catalytic activity of material, resulting in Ni-doped Ce with a longer incubation time (11.81 h) than Ag-doped Ce (10.58 h) and non-doped Ce (10.30 h). In-vitro SPF value was measured using the thin layer technique of sunscreen prototype with Virgin Coconut Oil (VCO)-based emulsion, which yielded 10.862 and 5.728 SPF values for 10% Ag-doped Ce and 10% Ni-doped Ce, respectively. The dopant addition of nanoceria could reduce catalytic activity and give a decent in vitro UV-shielding performance test; thus, Ag and Ni-doped nanoceria could be seen as promising candidates for alternative physical sunscreen agents.


Cerium , Nanoparticles , Sunscreening Agents/pharmacology , Reactive Oxygen Species , Nanoparticles/chemistry , Cerium/pharmacology , Cerium/chemistry
7.
J Oleo Sci ; 73(2): 121-134, 2024.
Article En | MEDLINE | ID: mdl-38311403

Factors influencing on in vitro evaluation of UV protecting ability of sunscreens were analyzed. It was found that any factors making the sunscreen layer spatially inhomogeneous, such as directional viscous fingering during the sunscreen application, dewetting of applied sunscreen layer, and the surface roughness of the standard PMMA plate, alter the UV transmittance. New application procedure and new type of flat hydrophilic plate were developed for inhibiting the generation of spatial inhomogeneity in applied sunscreen layer. The method created by the combination of these newly developed technologies succeeded in providing reliable and reproducible in vitro evaluation of UV protecting ability.


Sunscreening Agents , Ultraviolet Rays , Sunscreening Agents/pharmacology , Viscosity , Hydrophobic and Hydrophilic Interactions , In Vitro Techniques
8.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article En | MEDLINE | ID: mdl-38338710

Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.


Skin Neoplasms , Ultraviolet Rays , Animals , Humans , Ultraviolet Rays/adverse effects , Antioxidants/pharmacology , Antioxidants/metabolism , Skin/metabolism , Keratinocytes , Carotenoids/pharmacology , Carotenoids/metabolism , Skin Neoplasms/metabolism , Sunscreening Agents/pharmacology
9.
Photodermatol Photoimmunol Photomed ; 40(1): e12943, 2024 Jan.
Article En | MEDLINE | ID: mdl-38288770

BACKGROUND: The human skin microbiome is a dynamic ecosystem that plays an important role in skin health. The skin microbiome has been implicated in numerous diseases, and our knowledge surrounding it continues to evolve. A better understanding of the interactions between the environment and the skin microbiome will lead to improvements in skin health. METHODS: This article reviews the published literature surrounding the impact of ultraviolet radiation (UVR) and sunscreen on the skin microbiome. RESULTS: Skin microbes are differentially impacted by UVR, and alterations in the microbiome can be detected following UVR exposure. These changes are related to direct bactericidal effects, alterations in the cutaneous metabolome, and changes in the cutaneous immune system. UV filters used in sunscreen have been shown to have bactericidal effects, and many compounds used in sunscreen emulsions can also negatively impact cutaneous microbes. CONCLUSION: A healthy microbiome has been shown to produce compounds that help protect the skin from UVR, and sunscreen has the potential to reduce the diversity of the skin microbiome. This indicates that designing sunscreen products that both provide protection against UVR and preserve the skin microbiome may offer additional benefits to skin health when compared with traditional sunscreen products.


Sunscreening Agents , Ultraviolet Rays , Humans , Sunscreening Agents/pharmacology , Ultraviolet Rays/adverse effects , Ecosystem , Skin/radiation effects
10.
Photodermatol Photoimmunol Photomed ; 40(1): e12937, 2024 Jan.
Article En | MEDLINE | ID: mdl-38069506

BACKGROUND: Long wavelength ultraviolet-A1 in combination with visible light induces hyperpigmentation, particularly in dark-skin phototypes. This study evaluated the efficacy of four sunscreen formulations in protecting against VL + UVA1 (370-700 nm). METHODS: The test products (A-D) were applied to the back of 12 volunteers, then irradiated with 320 J/cm2 VL + UVA1 (3.5% UVA1 [370-400 nm]). Immediately after irradiation, and at Days 1, 7, and 14, erythema and pigmentation were assessed by investigator global assessment (IGA), colorimetry (Δa* and ΔITA) and diffuse reflectance spectroscopy (DRS)-measured relative dyschromia (area under the curve AUC). Control areas were irradiated without sunscreen. RESULTS: Product D, containing titanium dioxide 11%, iron oxides 1%, and antioxidants, provided the highest and most consistent protection. Compared with unprotected irradiated control, it had statistically significantly less erythema on IGA, DRS (Δoxyhemoglobin), and colorimetry (Δa*) at Day 0; less pigmentation on IGA at all time points, on DRS (relative dyschromia) at Days 7 and 14, and on colorimetry (ΔITA) at Day 0. Product B, containing zinc oxide 12% plus organic UV filters, iron oxides 4%, and antioxidants, also showed some efficacy. CONCLUSION: Of the sunscreens tested, the tinted products provided better protection against VL + UVA1 than the non-tinted products. Since the product with 1% iron oxides was superior to the product with 4% iron oxides, further studies are needed to evaluate whether iron oxide content correlates with better protection.


Sunscreening Agents , Ultraviolet Rays , Humans , Sunscreening Agents/pharmacology , Sunscreening Agents/chemistry , Ultraviolet Rays/adverse effects , Light , Erythema , Oxides , Iron , Immunoglobulin A , Skin/radiation effects
11.
Photochem Photobiol ; 100(2): 477-490, 2024.
Article En | MEDLINE | ID: mdl-37485720

A reconstructed human epidermal model (RHE) colonized with human microbiota and sebum was developed to reproduce the complexity of the skin ecosystem in vitro. The RHE model was exposed to simulated solar radiation (SSR) with or without SPF50+ sunscreen (with UVB, UVA, long-UVA, and visible light protection). Structural identification of discriminant metabolites was acquired by nuclear magnetic resonance and metabolomic fingerprints were identified using reverse phase-ultra high-performance liquid chromatography-high resolution mass spectrometry, followed by pathway enrichment analysis. Over 50 metabolites were significantly altered by SSR (p < 0.05, log2 values), showing high skin oxidative stress (glutathione and purine pathways, urea cycle) and altered skin microbiota (branched-chain amino acid cycle and tryptophan pathway). 16S and internal transcribed spacer rRNA sequencing showed the relative abundance of various bacteria and fungi altered by SSR. This study identified highly accurate metabolomic fingerprints and metagenomic modifications of sun-exposed skin to help elucidate the interactions between the skin and its microbiota. Application of SPF50+ sunscreen protected the skin ecosystem model from the deleterious effects of SSR and preserved the physiological interactions within the skin ecosystem. These innovative technologies could thus be used to evaluate the effectiveness of sunscreen.


Multiomics , Sunscreening Agents , Humans , Skin/radiation effects , Sunscreening Agents/pharmacology , Sunscreening Agents/chemistry , Ultraviolet Rays
12.
Int J Cosmet Sci ; 46(1): 71-84, 2024 Feb.
Article En | MEDLINE | ID: mdl-37664974

OBJECTIVE: Ultraviolet radiation (UVR) is a known environmental key factor for premature skin ageing. Only few scientific evidence is available to support the effects of UVR on the skin microbiome. This in vivo pilot study aimed to evaluate the impact on the skin microbiome upon erythemal UV exposure and the protection of UV-exposed skin microbiome by UV filters. METHODS: Ten female volunteers were treated with an sun protection factor (SPF) 20 sunscreen and placebo formulation (without UV filters) on their upper middle backs and irradiated with an erythemal dose (2 MED) by a solar simulator. Skin swabbing samples from four zones (i.e., unexposed, exposed, sunscreen- and placebo-treated on exposed skin) were collected for the microbiome analysis before and 2 h after UV exposure, respectively, and processed via shallow 16S rRNA Amplicon and Shotgun metagenomic sequencing. An in vitro UV method was developed to confirm the protection of isolated bacterial strains by single UV filters and combinations. RESULTS: Alpha diversity was impacted by significant inter-individual differences and by treatment rather than by irradiation. Cutibacterium acnes was found to be the most abundant and a confounding factor for diversity. On a species level, Lactobacillus crispatus was negatively associated with UVR and placebo treatment, whereas there was a positive association with sunscreen treatment. The sunscreen treatment also favoured an interaction network with central Micrococcus genus. The in vitro results showed that both single UV filters and combinations had specific effects on the survival rates of L. crispatus, C. acnes, and Staphylococcus epidermidis. CONCLUSION: We identified potential microorganisms and bacterial interactions that were associated with an SPF 20 sunscreen treatment. The specific protection of L. crispatus as a key player in the UV-exposed skin microbiome and reduction of C. acnes population by UV filters might lead to new cosmetic concepts for photoprotection.


OBJECTIF: Le rayonnement ultraviolet (RUV) est un facteur environnemental clé connu du vieillissement prématuré de la peau. Peu de preuves scientifiques sont disponibles pour étayer les effets des RUV sur le microbiome cutané. Cette étude pilote in vivo visait à évaluer l'impact sur le microbiome cutané d'une exposition érythèmateuse aux UV et la protection du microbiome cutané exposé aux UV par des filtres UV. MÉTHODES: Dix volontaires de sexe féminin ont été traitées avec une crème solaire SPF 20 et une formulation placebo (sans filtres UV) sur la partie supérieure du centre du dos et irradiées avec une dose érythémateuse (2 MED) par un simulateur solaire. Des échantillons de peau prélevés par écouvillonnage dans quatre zones (c.-à-d., zone non exposée, zone exposée, zone traitée avec un écran solaire et zone traitée avec un placebo sur la peau exposée) ont été prélevés pour l'analyse du microbiome avant et 2 heures après l'exposition aux UV, respectivement, et traités par séquençage superficiel d'amplicon de l'ARN 16S et métagénomique shotgun. Une méthode UV in vitro a été développée pour confirmer la protection des souches bactériennes isolées par des filtres UV individuels et des combinaisons de filtres. RÉSULTATS: La diversité alpha a été affectée par des différences interindividuelles significatives et par le traitement plutôt que par l'irradiation. Le cutibacterium acnes s'est avéré être le facteur le plus abondant et confondant pour la diversité. Au niveau de l'espèce, le Lactobacillus crispatus était négativement associé au traitement par RUV et placebo, tandis qu'on observait une association positive avec le traitement par écran solaire. Le traitement par crème solaire favorisait également un réseau d'interactions avec le genre Micrococcus central. Les résultats in vitro ont montré que les filtres UV individuels et les associations de filtres avaient des effets spécifiques sur les taux de survie de L. crispatus, C. acnes, et S. epidermidis. CONCLUSION: Nous avons identifié des micro-organismes et des interactions bactériennes potentiels qui étaient associés à un traitement par crème solaire SPF 20. La protection spécifique de L. crispatus en tant qu'acteur clé dans le microbiome cutané exposé aux UV et la réduction de la population de C. acnes par des filtres UV pourraient conduire à de nouveaux concepts cosmétiques de photoprotection.


Acne Vulgaris , Microbiota , Humans , Female , Ultraviolet Rays , Sunscreening Agents/pharmacology , Pilot Projects , RNA, Ribosomal, 16S , Skin , Erythema , Acne Vulgaris/drug therapy
13.
J Cosmet Dermatol ; 23(1): 308-315, 2024 Jan.
Article En | MEDLINE | ID: mdl-37539499

BACKGROUND: Chronic exposure to ultraviolet (UV) irradiation causes immunosuppression, photoaging, and carcinogenesis by induction of a cascade of skin damages. Sunscreens currently on the market are not absorbing UV rays uniformly throughout the full UV range, high sun protection factor (SPF) sunscreens absorb most of UVB rays but are less effective in absorbing the UVA part of the spectrum. In the context, one approach could consist of preserving the skin natural resources and mechanisms, which is the foundation of the ecobiological approach, by combing UV filters and antioxidants to enhance their photoprotective effect. METHODS: First, the photoprotection properties of ectoine and mannitol association were characterized by the quantification of glutathione, reactive oxygen species, and double-stranded DNA breaks and by the epidermal Langerhans cells functionality. Second, the protection of squalene oxidation, catalase activity, and trans-urocanic acid (UCA) by the ectoine and mannitol association combined or not with SPF30 UV filters was assessed in vivo via non-invasive skin samplings in 10 subjects on irradiated areas. RESULTS: Using in vitro irradiated skin cell models, we demonstrated that this association significantly preserved intracellular glutathione levels, reduced DNA strand breaks induced by oxidative stress, and maintained Langerhans cell functionality. In vivo this association combined with UV filters presented significantly higher protection of three natural defense systems altered by UV compared to UV filters alone: squalene oxidation, catalase activity, and preservation of trans-UCA. CONCLUSION: This study demonstrates the ecobiological potential of combining UV filters with biological protection to increase skin photoprotection provided by specific active ingredients with antioxidative and immunosuppressive properties.


Squalene , Sunscreening Agents , Humans , Sunscreening Agents/pharmacology , Catalase/pharmacology , Skin , Ultraviolet Rays/adverse effects , Antioxidants/pharmacology , Glutathione
14.
J Eur Acad Dermatol Venereol ; 38(1): 214-222, 2024 Jan.
Article En | MEDLINE | ID: mdl-37655436

BACKGROUND: Of all ultraviolet (UV) radiations reaching the earth, UVA1 rays have a higher potential of penetrating and producing clinically harmful consequences. While UV radiations up to 370 nm are well-blocked by current sunscreens, a photoprotection gap remains for the UVA1 wavelengths between 370 and 400 nm. OBJECTIVE: This study was to assess under outdoor summer conditions the impact on pigmentation and skin ageing signs of a protection against UVA1 using methoxypropylamino cyclohexenylidene ethoxyethylcyanoacetate (MCE) filter added to a reference SPF50 sunscreen, in comparison with the same sunscreen without the MCE filter. MATERIALS AND METHODS: This prospective randomized comparative intra-individual study was conducted in 113 women in Brazil and China. Subjects had their face and two forearms exposed twice-daily to a 1-h outdoor sunlight exposure over 8 weeks. Before exposure, the SPF50 sunscreen containing 3% MCE was applied on one half-face and one forearm and the same reference product without MCE on the other half-face and forearm. Primary study endpoint was skin colour changes (chromametry). Other endpoints included expert panel grading of pigmentation and facial skin ageing, and naïve panel assessment of facial skin radiance and homogeneity. RESULTS: After 8 weeks, the skin was darker on both forearms but the increase in sun-induced pigmentation was smaller with the SPF50/MCE sunscreen. Expert panel evaluations showed no change in severity scores for pigmentation and a decreased severity scores for facial skin ageing in areas protected with the SPF50/MCE product: severity scores in areas protected with the SPF50 alone were either increased (pigmentation) or unchanged (skin ageing). Naïve panel evaluations of skin radiance and homogeneity showed statistically significant superiority of the SPF50/MCE product. CONCLUSION: Overall, this study demonstrates that a protection with the SPF50/MCE sunscreen significantly reduces pigmentation and ageing signs compared to the same SPF50 sunscreen.


Pigmentation Disorders , Sunscreening Agents , Humans , Female , Sunscreening Agents/pharmacology , Sunscreening Agents/therapeutic use , Prospective Studies , Ultraviolet Rays/adverse effects , Sunlight/adverse effects , Skin
15.
Int J Biol Macromol ; 257(Pt 1): 128585, 2024 Feb.
Article En | MEDLINE | ID: mdl-38056734

Currently, commercial sunscreens cause a number of biotoxicity and environmental issues, making it imperative to develop biocompatible alternatives. In this study, we aimed to develop an alternative sunscreen from two ecofriendly and biocompatible natural polyphenolic compounds, tannic acid (TA) and quercetin (Que). The sunscreen was prepared through a simple process using an oil-in-water emulsion as the medium and hyaluronic acid (HA) as the base polymer to improve biocompatibility. The HA/TA/Que. sunscreen prepared in this study exhibits 0 % transmittance in the UVB region and <15 % transmittance in the UVA region, resulting in excellent sun-protection properties (SPF 30). Remarkably, the as-prepared HA/TA/Que. sunscreen has a suitable viscosity and similar UV protection properties to those of commercial sunscreens. The HA/TA/Que. sunscreen also exhibits 90.4 % antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl, demonstrating an ability to effectively capture reactive oxygen species that directly affect the skin. In addition, the cell viability was >90 % at a concentration of 50 µg/mL after 7 days, indicating excellent cytocompatibility. Owing to its various advantageous features, the HA/TA/Que. sunscreen with excellent sun protection properties and multiple functionalities is expected to resolve many environmental and biological issues caused by commercial sunscreens.


Quercetin , Sunscreening Agents , Sunscreening Agents/pharmacology , Quercetin/pharmacology , Hyaluronic Acid , Ultraviolet Rays , Skin , Polyphenols
16.
Arch Microbiol ; 206(1): 35, 2023 Dec 23.
Article En | MEDLINE | ID: mdl-38141073

Interest in Antarctic fungi has grown due to their resilience in harsh environments, suggesting the presence of valuable compounds from its organisms, such as those presenting photoprotective potential, since this environment suffers the most dangerous UV exposure in the world. Therefore, this research aimed to assess the photoprotective potential of compounds from sustainable marine sources, specifically seaweed-derived fungi from Antarctic continent. These studies led to discovery of photoprotective and antioxidant properties of metabolites from Arthrinium sp., an endophytic fungus from Antarctic brown algae Phaeurus antarcticus. From crude extract, fractions A-I were obtained and compounds 1-6 isolated from E and F fractions, namely 3-Hydroxybenzyl alcohol (1), (-)-orthosporin (2), norlichexanthone (3), anomalin B (4), anomalin A (5), and agonodepside B (6). Compounds 1, 2, and 6 were not previously reported in Arthrinium. Fraction F demonstrated excellent absorbance in both UVA and UVB regions, while compound 6 exhibited lower UVB absorbance, possibly due to synergistic effects. Fraction F and compound 6 displayed photostability and were non-phototoxic to HaCaT cells. They also exhibited antioxidant activity by reducing intracellular ROS production induced by UVA in keratinocyte monolayers and reconstructed human skin models (resulting in 34.6% and 30.2% fluorescence reduction) and did not show irritation potential in HET-CAM assay. Thus, both are promising candidates for use in sunscreens. It is noted that Fraction F does not require further purification, making it advantageous, although clinical studies are necessary to confirm its potential applicability for sunscreen formulations.


Ultraviolet Rays , Xylariales , Humans , Sunscreening Agents/pharmacology , Sunscreening Agents/chemistry , Skin , Antioxidants/pharmacology , Antioxidants/metabolism
17.
Sci Rep ; 13(1): 22530, 2023 12 18.
Article En | MEDLINE | ID: mdl-38110536

Ultraviolet nail lamps are becoming increasingly popular, however, the safety of their use remains controversial. The following article directly responds to recently published literature data and aims to determine the viability of human keratinocytes irradiated by a UV nail-drying machine. Cells were exposed to 365-405 nm wavelength UV light emitted by a nail drying machine in two time variants: 4 and 20 min, with and without sunscreen cream SPF50 protection, and compared to the untreated control. Compared to the control, cell viability after irradiation for 4 min decreased insignificantly (p < 0.1), however for 20 min decreased by 35% (p < 0.0001). Furthermore, cells with sunscreen protection compared to those without showed significantly increased viability, regardless of time-variant (p < 0.0001). The study shows that 4-min irradiation does not significantly reduce the viability of human keratinocytes and the time of 20 min significantly alters the research results compared to 4 min, which corresponds to real conditions. The results suggest that typical manicure exposure time does not significantly affect keratinocyte viability, which could increase the risk of developing skin cancers. Despite the above results, it is recommended to use sunscreen protection on your hands during the procedure, which significantly increases the viability of keratinocytes during ultraviolet nail lamp radiation.


Skin Neoplasms , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , Sunscreening Agents/pharmacology , Keratinocytes/radiation effects , Nails
18.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article En | MEDLINE | ID: mdl-37950572

Exposure to ultraviolet (UV) rays is a known risk factor for skin cancer, which can be notably mitigated through the application of sun care products. However, escalating concerns regarding the adverse health and environmental impacts of synthetic anti-UV chemicals underscore a pressing need for the development of biodegradable and eco-friendly sunscreen ingredients. Mycosporine-like amino acids (MAAs) represent a family of water-soluble anti-UV natural products synthesized by various organisms. These compounds can provide a two-pronged strategy for sun protection as they not only exhibit a superior UV absorption profile but also possess the potential to alleviate UV-induced oxidative stresses. Nevertheless, the widespread incorporation of MAAs in sun protection products is hindered by supply constraints. Delving into the biosynthetic pathways of MAAs can offer innovative strategies to overcome this limitation. Here, we review recent progress in MAA biosynthesis, with an emphasis on key biosynthetic enzymes, including the dehydroquinate synthase homolog MysA, the adenosine triphosphate (ATP)-grasp ligases MysC and MysD, and the nonribosomal peptide synthetase (NRPS)-like enzyme MysE. Additionally, we discuss recently discovered MAA tailoring enzymes. The enhanced understanding of the MAA biosynthesis paves the way for not only facilitating the supply of MAA analogs but also for exploring the evolution of this unique family of natural sunscreens. ONE-SENTENCE SUMMARY: This review discusses the role of mycosporine-like amino acids (MAAs) as potent natural sunscreens and delves into recent progress in their biosynthesis.


Amino Acids , Sunscreening Agents , Amino Acids/chemistry , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Oxidative Stress , Ultraviolet Rays
19.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37958837

The growing concern regarding the adverse effects of synthetic UV filters found in sunscreens has spurred significant attention due to their potential harm to aquatic ecosystems and human health. To address this, the present study aimed to extract and microencapsulate sensitive bioactive compounds derived from by-product onion peel (OP) by molecular inclusion using ß-cyclodextrin as the wall material. Identification and quantification of bioactive compounds within the extract were conducted through high-performance liquid chromatography (HPLC-DAD) analysis, revealing quercetin and resveratrol as the primary constituents. The photoprotection capacity, evaluated by the sun protection factor (SPF), revealed a protection factor comparable to the value for a synthetic UV filter. The produced microparticles presented high antioxidant capacity, significant photoprotection capacity, encapsulation efficiency of 91.8%, mean diameter of 31 µm, and polydispersity of 2.09. Furthermore, to comprehensively evaluate the performance of OP extract and its potential as a natural UV filter, five O/W emulsions were produced. Results demonstrated that microparticles displayed superior ability in maintaining SPF values over a five-week period. Photoprotection evaluation-skin reactivity tests revealed that both extract and microparticles absorb UV radiation in other regions of UV radiation, revealing their potential to be used as a natural UV filter to produce a sustainable and eco-friendly value-added sunscreen.


Ultraviolet Rays , beta-Cyclodextrins , Humans , Ultraviolet Rays/adverse effects , Onions , Ecosystem , Sunscreening Agents/pharmacology , beta-Cyclodextrins/pharmacology , Skin
20.
ACS Biomater Sci Eng ; 9(11): 6165-6174, 2023 11 13.
Article En | MEDLINE | ID: mdl-37909769

Prolonged skin exposure to UV radiation may result in sunburn, with possible inflammatory and oxidative stress to the skin, skin photoaging, photocarcinogenesis, even DNA damage, and apoptosis if sunscreen protection is not used. Due to the advantages that they offer, high encapsulation capability, increased stability of encapsulated bioactive agents, and release control, nanoparticulate materials have been used in sunscreens despite the hazard that they present: their capacity to penetrate the skin causing toxic side effects (especially the chemical sunscreens). The present study reports the preparation of nanoparticulate composites containing only GRAS substances and using an eco-friendly, inexpensive procedure. The ingredients used have properties that are beneficial to the skin. Zein (Z), a prolamin-rich protein from corn, is biodegradable and biocompatible, is a moisture attractor, and shows effective absorption by cells. Lupulone (L), extracted from hops, is an antibacterial and antioxidant agent that has a stimulating effect on the collagen production in the body due to its content of phytohormones. Gum arabic (GA) is a natural glycoprotein used in beverages and cosmetics as an emulsifier/stabilizer. Composite matrices containing Z/GA/L were prepared using a simple method (antisolvent), which replaces the flammable solvent ethanol with aqueous propylene glycol. The nanocomposites were characterized by FTIR, composition, encapsulation efficiency, and loading capacity for L, size, zeta potential, and morphology (SEM). Their biological activity was investigated as well. The zein-based nanoparticles showed antioxidant and antimicrobial effects (even some synergistic, unexpected behavior) and modulatory activity on the matrix metalloproteinase MMP-1. Due to their properties, the nanoparticles discussed herein show potential for use in formulations for the skin, especially for mature skin, replacing chemical substances with potential side effects used typically in topical delivery systems.


Nanoparticles , Zein , Antioxidants/pharmacology , Zein/chemistry , Sunscreening Agents/pharmacology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
...